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Wave Profile Modification in the Free Electron Laser
With and Without a Waveguide

AMNON FRUCHTMAN

Abstract—The modification of the transverse wave profile by the Free
Electron Laser (FEL) interaction in the collective Raman regime is
considered. We calculate the gain and find the transverse wave profile
by solving for the eigenvalues and the actual eigenmodes of the system.
When a waveguide is employed, a strong FEL interaction is shown to
couple various vacuum waveguide modes, as was recently demon-
strated by the Columbia group [23]. When no waveguide or cavity is
present, we identify a coupling parameter which measures the strength
of the interaction. We derive expressions for the gain for large and
small values of the coupling parameter, corresponding to a strong op-
tical guiding and large diffraction, respeetively. Comparing the pre-
sent results for the Raman regime with previous results for the strong-
pump regime, we show that the gain scales differently in each case,
depending upon both the regime of operation and on the beam geom-
etry. Our linear analysis is valid when the signal is small, and is useful
mainly when the gain is high prior to saturation.

[. INTRODUCTION

HE MODIFICATION of the transverse profile of the

electromagnetic wave in the Free Electron Laser
(FEL) [1] is a subject of extensive theoretical [2]-[20]
and experimental [21]-[23] study. It is hoped that the
guiding of the amplified wave by the electron beam will
eliminate the need for a cavity or a waveguide to confine
the radiation. Also, the confinement of the wave profile
to the electron beam volume increases the filling factor
and thus strengthens the interaction. In this paper we ex-
amine how the FEL interaction of a cylindrical electron
beam in the collective *‘Raman’’ regime modifies the ra-
dial profile of the wave in two situations: First, in the
presence of a cylindrical waveguide; and secondly. when
no such waveguide is present.

As in our previous papers [10], [16]-[18] and as has
been done by several others [3]-[6]. [14], [15]. [30]. we
address this problem by formulating an eigenvalue prob-
lem for the transverse profile of the wave. The eigenfunc-
tions are wave modes of a self-similar nature. They pre-
serve their transverse profiles as they propagate along the
FEL. The imaginary part of the eigenvalue determines the
growth rate of the mode. The eigenvalue formulation is
mostly useful to describe the interaction when the signal
is small and the gain is high prior to saturation. The linear
analysis is then valid and the wave grows exponentially.
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If one mode has a higher growth rate than all other modes.
the growth rate of the most unstable mode is the actual
growth rate of the wave. and the wave transverse profile
is described by the profile of this mode. Thus solving for
the eigenvalues and the actual cigenmodes of the system
may directly yield the growth rate ot the wave and its
transverse profile. without the use of vacuum modes or of
other systems of orthogonal tunctions. The eigenvalue
formulation is not valid in the nonlinear regime. In the
nonlincar regime. particle simulation is usually needed
12]. [71. 19]. {11]. ]21]. [24] and because of mode cou-
pling. probably more than one mode is needed to describe
the wave profile. The linear eigenvalue tormalism. how-
cver, could guide nonlinear particle simulation and the
two methods could be complementary. A compressed ver-
sion of our formalism with its application to the Columbia
experiment 23], and with a comparison to the Columbia
nonlinear simulations has appeared recently [26]. The re-
sults ot our formalism and those of the Columbia simu-
lations were found to be in good agreement. Here. we
give a more detailed and rigorous version ot the formal-
ism. We also present the tool of energy integral and the
asymptotic expressions of the gain and show additional
effects such as the dependence of the wave profile on the
waveguide radius and the wave guiding when a wave-
guide is not present.

We use a cold-fluid model to describe the electron dy-
namics. We do not address beam emittance. thermal
spread. and betatron oscillations. The betatron oscilla-
tions introduce an eftective thermal spread which limits
the validity of the cold fluid model. Recently, Yu and
Krinsky addressed betatron oscillations within an eigen-
value formulation [15]}.

In Section II we present the general formalism. Using
the cold-fluid equations for the electron dynamics and the
Maxwell equations for the waves. we analyze the inter-
action of an FEL which employs a cylindrical electron
beam and which operates in the Raman regime. The gov-
erning equations are two decoupled second-order differ-
ential equations for two wave components. Their solu-
tions may be coupled through the boundary conditions.

In Section III we apply this formalism to the case in
which a cylindrical waveguide is present. We show that
if the interaction is strong enough and the difference be-
tween the phase velocities of neighboring vacuum wave-
guide modes is small enough, the actual eigenmodes of
the FEL system significantly differ from the vacuum
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waveguide modes. Each FEL eigenmode is a superposi-
tion of several vacuum waveguide modes. This coupling
of several vacuum waveguide modes has been experimen-
tally demonstrated and theoretically analyzed by the Co-
lumbia group [11]. [23]. In their experiment the amplified
wave was allowed to propagate beyond the point at which
the electron beam had been terminated. An interference
pattern was exhibited between the several vacuum wave-
guide modes of which the FEL eigenmode was composed.
As mentioned above. our analysis confirms their results.
In addition, we are also able to analytically derive expres-
sions for the wavefield profile and a dispersion relation.

In Section 1V we present an energy integral which de-
termines the domain in the complex plane where nonreal
eigenvalues are allowed. This domain is circular when the
electron beam has a uniform density, and has the shape
of a stadium when the density is not unitorm.

In Section V we apply our formalism to the FEL inter-
action in the Raman regime when no waveguide or cavity
is present. We look for eigenmodes that vanish at an in-
finite radial distance. Following Moore’s analysis for the
strong-pump regime [3). we identify a coupling parameter
for the Raman regime. When the coupling parameter is
large the growing waves are confined to the beam volume.
The effective filling factor is then one and the gain scales
as in the one-dimensional case. The opposite happens in
the case of a small coupling parameter. The growing
modes still have a transverse profile which vanishes at a
distance from the beam axis. The transverse cross section
of the wave, however, is much larger than that of the elec-
tron beam, corresponding to a small filling factor. The
gain is reduced relative to the one-dimensional scaling be-
cause of these diffraction losses. The particular scaling of
the gain when diffraction is large depends on the FEL re-
gime of operation. and is different in the collective Raman
regime from the scaling in the strong-pump Compton re-
gime. The diffraction losses depend also on the geometry.
In previous papers we studied the FEL interaction of a
sheet electron beam in the strong-pump regime [16] and
Raman regime [27]. The coupling parameter and scaling
of the gain when this coupling parameter was small were
different from those of the FEL interaction of a cylindrical
electron beam. A comparison between the different scal-
ings of the gain of sheet-beam and cylindrical-beam FEL's
in the Compton and Raman regimes is presented in [27].
In each of these four cases, varying the beam transverse
dimensions, while keeping the beam current fixed, has two
opposing effects. When the beam transverse dimensions
are reduced the density increases and the gain grows. On
the other hand, the decrease in beam dimensions causes
the coupling parameter to be reduced and the effective fill-
ing factor to decrease, and this has the opposite effect of
reducing the gain. We show that in our case, the presence
of these two effects results in a nonmonotonic dependence
of the gain on the beam radius. In a different regime of
operation or in a different geometry, the behavior of the
gain, when the beam transverse dimension is reduced,
may be different.

In Section VI we study numerically the influence of the
waveguide radius (as opposed to the beam radius of Sec-
tion V) on the wave growth rate and wave profile in the
FEL.

Il. THE GENERAL FORMALISM

The electron-beam dynamics is governed by the cold-
fluid equations. These are the continuity equation:

14
== (Hy) + V- (HP) =0 (1)
c ot
and the momentum equation:
y 9P
o TE-¥E=-(1E+ P XB) (2)

Here P = yov/c is the normalized momentum, c is the
velocity of light in vacuum, v is the electron velocity, and

v is
V' =1+P-P (3)
Also, H is the normalize fluid density,

H = w,z,/(cz'y) (4)

where w,, is the plasma frequency. The fields £ and B are
the electric and magnetic fields multiplied by (e/mcz),
where —e and m are the electron charge and mass.

The electron beam is assumed to propagate along a hel-
ical magnetic wiggler of the approximate form:

B, = B.(8, cos ¢ ~ & sin ). (5)
Here ¢ is the helical coordinate,
o =0 —k,z (6)

where r, 8, and z are the usual cylindrical coordinates.
We assume that the beam is thin:

kor, << 1 (7)

(r, is the beam radius) so that we may approximate the
wiggler field by its form on-axis. The equilibrium flow is
assumed to be helical:

B, . .
P=p-= —r(e,,cosw ~ & sin @)
+ly-1-a)"e (8)
where a,. = B, /k,. We assume that the transverse ex-

cursion of the electrons is much smaller than the beam
radius r, so that the beam envelope is not distorted by the
electron wiggling and preserves its cylindrical shape.

We now turn to the linearized equations. We assume
that

P << p- (9)

and that the perturbed quantities vary mainly axially and
not transversely:

dbg dog
-, T <<
ar ' a6

dog

R (10)
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The requirement of a small transverse excursion, together
with (7) and (9), are combined to a,. /(¥ — | — a2)'/?
<< k,r, << 1. Using the two assumptions (9) and (10),
we neglect terms of the type p,(8/dr) and py(d/386) in
the cold-fluid equations. We write each quantity as

G(r. .z, 1) =gl(r, o)

oo

E (Sg(”) ( r) eimc +igz — iwf )

H= —0o

+ Re

(11)

We limit ourselves to the case in which one helical har-
monic is dominant; say n = [. Then noting that

0 0 0
— == —k,— 12
dz 0z ) (12a)
and that
0 0
— = — 12b
a0  dy ( )
we define
k. = q — lk,. (12¢)

In this case 8E'/’ and 6B'/’ are dominant and are coupled
to 67" and 6E!~", the slow-wave components. The
continuity equation for k' ~ " becomes

[—vw/c + (k + k,)p.Joh! ="

= h[p.w/(ve) = (k. + k,)]p!' "V . (13)
Here we used the approximate relation,
yoy !~ = p.pld Tl (14)

We assume that k"'~ "’ becomes large and that . is such
that

|k. + k, — yo/p.c| << k,. (15)

The momentum equation for ép!' ™"’ becomes

i[—yw/c‘ + (k. + k“.)p:]ﬁp;l_ )
= —yoE!™" + & a,8EY (16)

w
where
OE, + iOE

6E1r = (_;.’_0)_ (17)

2

We express the normalized charge density p (the charge
density multiplied by 47 ) and normalized current density
J (the current density multiplied by 47 /c) as

p = —Hy (18)
and
j=—HP. (19)
Gauss’ law for E! ™" is
ik, + k,)SE! ™" = —on'"Y '%apg’-” (20)

[EEE TRANSACTIONS ON PLASMA SCIENCE. VOL. I8, NO. 3. JUNE 1990

for which we used again (14). Note that the transverse
dependence of this slow wave is omitted. It is assumed
that the FEL interaction determines the transverse depen-
dence of 6Ef."”. The question of the transverse depen-
dence of this slow space-charge wave was recently ad-
dressed by Jerby and Gover [20].

Equations (13), (14), and (20) are algebraic equations
forsh'' =", 8pt'~ " and E{~"). They have the same form
as they have in the one-dimensional analysis as a result
of assumption (10). The perturbed density becomes:

iha, (k- + k., — p.w/yc)SE']
{[(k: + k,)p. — yw/c]2 - h(l + a‘l‘,)}
(21)

The /th harmonic of the perturbed perpendicular current,
to lowest order, is

6h(lfl) -

5j) = %“'ah"‘“ (22)
6j(gl) — I[I?“ 6h(/_“. (23)

Using (21)-(23), we now write the transverse currents as

oy’ = idj,) = —QOEY (24)

where
0= hai (k. + k, — p;w/yc) — (25)
2{[(k. + k)p. — yo/c] = (1 + a2)}

The expressions for §7'/’ are similar to those in the one-
dimensional analysis. The transverse dependence, how-
ever, makes 8p'"’ and 8"’ also large. In order to show

that 6p''’ and 8!’ are large, we write the /th helical har-

monic of the continuity equation:

i(kop. ~ yo/c)oh!"

= —ih(k: — wp./cy)op!’

ay i_([_l) (-1
+ > {ar " }M (26)

and the /th helical harmonic of the longitudinal compo-
nent of the momentum equation:

i(kp. = yw/c)opt"
ald (-1 .
2 L’ir r }W: - (27

We used the approximate relation yoy ‘'’ = p.ép!"’. From
these equations it is clear that the large perturbed density
8h'~1 and momentum &p!' =" contribute to 6k’ and
8p'" and therefore to 6p'"’ and 6"’ through the transverse

dependence. We use the expressions:

8" = —(hp./v)op!" ~ voh'"

= —'yﬁE(:l) +

(28)

and

8 = —nopl" — p.oh'" (29)
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and write the perturbed density and current as

sp!) = ihk (1 + a:’:.)(SE%" ia,
(k:p. — yw/c)  2(kp: = yw/c)
. F _ u}
ar r
[_ hl;:((kl:[: f;iip;;)” N 75h</—|)] (30)
and
§ji) = iho(1 + a; )55”) ia,

C(k:p: - 7w/c) " 2(k‘p: - ’Yw/c)

e _u=1n
ar r
[ hw(1 + a2)ép!'~!
cy(k.p. — yw/c)

+ psﬁh('_”]. (31)

Note that 8p'"", 84", 8¢, and 8/, as expressed in (22)-
(24), (30), and (31), satisfy the continuity equation. Using
assumption (15) in expressions (30) and (31), we find that
the contribution of 84/ "’ is larger than the contribution
of p~". We make the further assumption that the sec-
ond terms in the expressions (30) and (31) are larger than
the first terms. Thus o'/’ and 8" are determined mainly
by the resonant 8k ~!). We therefore approximate:

’_

o _ Y _3_ (-1 1

| e [
(32)

A el [ !
(33)

We have completed the derivation of the expressions for
the charge and current densities and now turn to the wave
fields.

The evolution of the wave fields is governed by the
Maxwell equations,

Vg - - 8 v (34)
e —— = X
=2 C2 6[2 = 'l
2 .
. ] °E 19
VE—S5—=Vp +~—. (35
24 JERFYS: yp - o ( )

The transverse components of (35) yield the two coupled
equations,

<V2 @z o >5Eu)
r C

! iw .
_>5p(l) — ?(»g)

_i(a,
2\ar " r

(36)

where 8j, = (38, ¥ idj;). Examining the expressions
for 80’ and 8!’ and assuming the transverse dependence
of the fields to be weaker than the z dependence, we ne-
glect the first term on the right-hand side (RHS) of the
equation. Also, following (24),

6j(l) — IQaE(l]
8 = 0.

(37)
(38)

One pair of governing equations is, therefore,

1o e\ (o2 , (-1 w
—_—— —— + — — L —_— - —
r or <r ar c’ k: r? c Q

“8EY =0 (39)
EW 2 R 2
LY IR S A I Y-
r ar ar c’ > re
(40)

where Q is defined in (25). The equation for 8E'" is the
same as in vacuum. The FEL interaction is expressed
through the presence of the term Q in the equation for
8E'!’. If there is no transverse dependence and therefore
! =1, (39) is reduced to the one-dimensional dispersion
relation,
2
L -k-2¢0=0 (41)
c
We now derive an equivalent form of the governing equa-
tions (39) and (40). When the FEL interaction in a wave-
guide is considered, it is sometimes convenient to write
the equations for £ and 6B.. The z components of (34)
and (35) are
u)}

w2 T
<v2 + ;7>6B‘:" = —47{ — (r8j§") -
~|2_U=1
= [ar }(QéE Dy (42)
2
<v2 + “’—2>5Eg” =
C

!
=
i
N
o

bA
|

Li(ky — pw/c) [g (- 1>J
(k-p. — yw/c) | or r
- (Q8EY]) (43)

where we used (24), (32), and (33) for §;'"’ and 8p""’.
From Maxwell’s equation it is easy to derive the follow-
ing relations:

<(% + é) <§ 8B\ — ikﬁEi”)

)
k§>5E<1> - SR8 (44)
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and

<3 _ 1><9 SB. + ik-aE:>
ar r/\c )

2 , 2i
= 2<‘—"—, = k;>aE‘_” + 250, (45)
C

c?

Upon using the expressions for the currents, these two last
equations become

9
<a— + ;) <9 5B — ik:BEf._”>
r C
= —2<°’—; — k- %Q)él-:‘i’ (46)
and

2
<3 - f) <9 5B + ik._aEf._”> = 2<°’—7 - k?ﬁ>65‘-”-
or rj/\c ) c”

(47)

After some algebraic manipulation we obtain from (42),
(43), (46), and (47) two decoupled equations,

aZ 18 IZ 2 .
<;,7 e e k3><5B‘:” - an5;”> =0
r r

(48)
¥ 18 I W, W
{ﬁ*:?ﬁ?* <?"‘:“;Q>G}
- <§ 5B\ — ik:aEg”> = 0. (49)
Here,
U= (k:7 - p:w/c)/(k:p: - 'Yw/c) (50‘1)
and
W’ 2 w? 5 w
G=2(>5 -k €S -k2)-o(2 +kU) |
C C C
(50b)

By operating on (46) and (47) with [(d/3r) — ((I —
1}/r)l and [(3/3r) + (({ — 1)/r)], respectively, and
by using (48) and (49) we derive the following relations:

(LB — ikoe™ ) = 2| L - U= D e
c - T ar r

C(51)

2 : 2
2<% - k?)k-f <<SB'.” - 6E‘.”> ~ G<i + k)(% N Q> <3 5B — ik:5E§_”>
c AR - v - AN Toc c ’

2 I+ 1
= —2(k. - w/’Uc)(% - k§> [(—% + ( )155 D,

and

Uc
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Equations (39), (40), (48), and (49) are equations for
8E'!), 6E'", (8B — i/USE"), and ((w/c)8B" —
ik_8E'""), with the unknown parameter (eigenvalue) k..
Even though these equations are not coupled, the bound-
ary conditions usually couple the unknowns.

We can solve equations (48) and (49) for 6B’ and
8E!" and for the eigenvalue k. and then find 8E\"’ and
8E}{’ from equations (46) and (47). Alternatively, we can
solve equations (39) and (40) for the transverse fields
8E'"” and SEY"’ and then use (51) and (52) to find the lon-
gitudinal fields 6E'" and 6B!".

The expressions for U and G are simplified if we use
inequality (15) and assume k. = w/c. Then,

w/c = kyy(y +p)/(1 + a;) (53)

as in the one-dimensional case. We may then approximate

= —~7/p?. For a relativistic beam y = p., U = —1
and G = |. We then also approximate:

_ hk

Ik + k)pe = ve/e] = h(1 + al))
wk, a.

Tk kw0 — (/e + @)

(54)

We will employ these approximations in the following.
Equations (48) and (49) are simplified to

P 1 2 2 )
<5ﬁ + 53 - l_v + 25— k;>(an._” +i6E!")y =0
r r- c”

(55)
¥ 1a P W, w
<m+;za7‘?+?"‘ “zQ>
- (6B — i8E) = 0. (56)

Relations (46) and (47) become:

wfo I )
c <ar * r>(6B:

= —2(3; ~ k-2 Q>aE‘1> (57)

c” C

2(“’—2 - k§>aE<_”.
C

(58)

— i5EL")

and

3
. < - —>(aBg“ + i6E)

PR

(52)
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Also, (51) and (52) become:

3 (-
2 (6B - BEV) =2| = - =D (59)
c ) | dr ro
and
3 U+1)]
< (8B + BE!) = 2| = + U D e (60)
¢ ) or r

From (57)-(60) we see that if 6E'” and 8E'” and their
derivatives are continuous. the fields 6E£'"’ and B!’ are
continuous as well. However, the derivatives of E!"’ and
6Bf." have a discontinuity at r = r;, if Q is not continuous
there (because the density is not continuous). Had we not
employed the approximations k. = w/c and p. = ¥, the
fields 8E!"" and 6B'"’ would have a discontinuity as well.
The jump at r = r, in the derivatives of 6B!'’ and 6E!"’ is
found from (57) and (58). From (58) we find that

’i (6B + iéEf.")‘ =0 (61)
ar re=riy
while from (57) and (58) we find that
asB" 368" )
[ ar‘ (r=ry) - 6r&‘ (r=rs )}
_ o w _
= _Q(r= r/))6E+ (rb) = _; Q(r= rh)

L 5>(53‘:” ~ i8EL")
r

{ ar
(2] oo @

The boundary condition at the origin is regularity.

The assumption of a cylindrical cross-section beam in-
volves a neglect of the beam-wiggling motion, which can
be modeled by surface charge and current distributions.
These surface charge and current could have a significant
effect when the beam radius is small.

We have completed the derivation of the governing
equations and of the boundary conditions at »r = 0 and r
= r,. In the next sections we study two cases. First, the
case of a cylindrical waveguide, and secondly, the case
when such a waveguide is not present.

S

| &

III. THE CASE OF A CYLINDRICAL WAVEGUIDE

Let us assume that a perfectly conducting wall is lo-
cated at r = R. The boundary conditions there are §E. =
0 and (36B./dr) = O or 8E; = 0 and (3/dr) (réE,) =
0.

The equilibrium beam density is assumed here to be
constant:

h = const, r<r,

h=0, r>r,. (63)
The solutions of (39) and (40) are
SE_ =AJ;.(k,r), O0=<r=R (64a)

and
SE. = A-J, (Sr), 0<r=r, (64b)
SE, = A3y ((k,r) + A Y, _ (k 1), r,<r=<R
(64c¢)
where
ko= ol — k2 (65a)
and
$T= o - kD - ? 0. (65b)

The quantities Q and § are constant because h is constant
for r < r,. Note again that § = 0 is the one-dimensional
dispersion relation. From the continuity of the fields and
their derivatives at r = r, we obtain:

Ardy o ((Sr) = AJ o (kory) + AY, (ko r,)
(66a)

S
k_Az-]/—l(Srh) = A]‘Il—l(k_L rh) + A, Yl—l(k_L rh)-
s

(66b)

The requirements 8E, = 0 and (3/dr)(rdE,) = 0atr =
R yield:

AJi o (k R) = A3J;_ (k R) + AY,_ (k. R)

(67a)
a a
A, 3 [r.],.|(kl r)] . + A, a—r[r.l,_,(kl r)] .
+ A i[rY (k. r)] =0
Por T T (67b)

The solvability condition of these equations yields the
dispersion relation. First, from (67a) and (67b) we find
that

A—' = 7k, RJ;(k, R)Y/ (k. R) — 1 (68a)
|
and
A,
1 = —xk, RJ,(k R)J|(k R). (68b)
|

We then use these expressions in (66a) and (66b) and ob-
tain the dispersion relation:

[wk, RJ,(k, R)Y[(k,R) — 1]
(ST (Sr) - (ko) = ko Ji (ko) - (Sr)]
— 7k RI/(k R)J [ (ky R)[ST]_(Sr,) Y, (k1)
=k Y[ (k. ry)J,-1(Sr)] = 0. (69)

Both £, and § are functions of the eigenvalue k.. After
numerically finding k., one can calculate A; and A,
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through (68a) and (68b), and A, through (66a) or (66b).
For completeness, we use (59) and (60) as well and write
the explicit expressions for all the field components (r <

r,,):
8E, = AJ; (kyor) + AyJ;(Sr)

8Ey = —i[A\J1 (ko r) — Aydy_(Sr)]
ic
8E, = — ” [Aiky Ji(kyr) + A,ST/(Sr)]
6B, = < [Ayk,Ji(k,r) — 4, ST,(Sr)]. (70)
w
When R = r = 1, the wave fields are
8E, = AyJyp (kyr) + Asd_(kor) + AsYi_ (ko)
8Eg = —i[A\ 1 (kor) — Asdy_ (ko r) = AsY (k, 7)]
2k c
6EZ = —1 lT [(A3 + Al)‘]l(kl r) + A4Y[(kl r)]
k, c
6B, = — = [(A3 — ANk r) + A Yi(k )] (71)

Similarly, expressions for 6B, and 6B, could be derived.

The effects of the waveguide and FEL interaction on
the wave transverse profile are clearly seen by examining
(55) and (56). In vacuum, when no beam is present, Q =
0 and the two equations are identical. The equations for
6B, and 6E, can be decoupled, and there are independent
solutions that correspond to TE and TM modes. On the
other hand, if the FEL employs a cylindrical beam with
no waveguide, the equations for 6B, + i6E, and 8B, —
i6F, could be decoupled. The noninteracting part 6B, +
i8E, is zero and one can solve for 6B, — i6E_ (or equiv-
alently for 6E, ). The presence of the waveguide prevents
6B, + i0FE, from being identically zero because of the
boundary conditions at the wall. The FEL interaction in
the presence of a waveguide supports, therefore, waves
that are neither TE nor TM waves. These waves are also
not purely right-hand polarized and are composed of both
6B. — idE, and 6B, + i8E, (6E, and 6E_). Recent work
by Hartemann et al. [30] also uses an eigenvalue formal-
ism to study an FEL in a cylindrical waveguide. Their
work analyzes the effects of a guide magnetic field in more
detail, but they seem to use a more approximated form by
neglecting the coupling of the TE and TM modes and re-
taining the TE modes only. Some of their results are sim-
ilar to those of the present work. :

1V. AN ENErRGY INTEGRAL IN THE CASE OF
NONUNIFORM BEAM DENSITY

In this section we study an FEL which employs an elec-
tron beam of nonuniform density that varies radially. We
assume that the density nonuniformity is small and write:

2
w,(r) (72a)

= w,z,(, + w,z,l(r)
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and
h(r) = hy + h\(r) (72b)
where
|w,2,|(r)| << w,2,0 (73a)
and
|h(r)| << ho. (73b)
We define a new eigenvalue,
=k. +k,— /v, — (w,,(,/v:'yyz)(l +d '/2
(74)
and assume:
lvl << (wp(,/v 73/2)(1 + az)l/2 (75)
We may now approximate:
B
= o e
where
WpoKiw a’
b= 27 %u,(1 + ak V2 (77)
and
f(r) = ”'(3/30 ay)'/?. (78)
We also write
‘:—;—k§=(v—£)(%’+kz> (79)

where &, the detuning parameter, is

w /e @0 , 1/2
£=k".——<——l>————3ﬁ<l+a“.> . (80)
c \v, v,w
In the one-dimensional case £ = 0 corresponds to the FEL
resonance. We assume that the transverse dependence is
larger than the longitudinal dependence and that therefore
¢ is much smaller than w/c. We also approximate (w/c)
+ k, =2(w/c).
With these definitions we write (39) and (40) in the fol-
lowing forms:

ol )
+[-z-‘c’3( —s)—’(’r_zz)—fg]a&—o
212
| 226-0-152]e -0 @
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We multiply (81) by r6E¥ and (22) by r6E*, integrate on
r from zero to R, and add the two equations. Using inte-
gration by parts, the regularity of the solutions at r = 0,
and the boundary conditions at the wall, we find, similarly
to [10] and [16], that

2(|8E, 220 + |8Es|: o)

Rar(|a K 2
r

I, 7< [gr o) >

— (r8E,)
SO drr<—2§(u ~§) - ’h>(|<515+|2 + |6E_|")

+

a’
—
r

+

g: dr271(|6E+ ” - [sE_]))

enger'(sE > =0 (83)
¢ Jo * -

Taking the imaginary part of this equality, we obtain:
R ) SE. |’

g drrv,-£2(|6E+l' + |6E_|2) - —ﬁ—l—Lz =0
0 lv = £(r)

(84)

We look for nonreal eigenvalues.for which »; # 0. The
term in the curly brackets has to take both positive and
negative values. Therefore, there must be roe[0, R] such
that

B|oE. |’ ; )
——— > 2(|6E, | + |SE_ (85)
o > 2B 1)

or
P (86)
IV "‘f(ro)‘ A

This last inequality determines a domain in the complex
v plane where nonreal eigenvalues are allowed. Assume
that the range of fis

fmin Sf(r) Sﬁnux* (87)

The domain of allowed eigenvalues is shown in Fig. 1. It
has the form of a stadium; a rectangle and two half-circles
of radius (6/2)'/2. When the density of the beam is uni-
form, the stadium shrinks into a circle. The case in which

Ifmux _fminl > (6/2)I/2 (88)

was analyzed by Fruchtman and Weitzner for a sheet beam
[18]. It can be analyzed in a similar way for a cylindrical
geometry.

In the next section we return to the case of a uniform
density beam. We derive asymptotic expressions for the
gain when optical guiding is strong and when diffraction
is large. -

(r| < R.

V. AsYMPTOTIC EXPRESSIONS FOR THE GAIN

We assume that the beam has a uniform density, f(r)
= 0, and give asymptotic expressions for the gain in the

|

‘ v plane

@i
@

Fig. 1. The domain in the v plane where nonreal cigenvalues are allowed.

two opposite cases of strong optical guiding and large dif-
fraction. The beam has a radius 7, and no waveguide or
cavity is present. Since there is no waveguide, the equa-
tions for 6E, and 6E_, which were coupled through the
boundary condition of the waveguide, are no longer cou-
pled. We choose 6FE_ = 0 and look for the radial profile
of the interacting mode 6E,. Following the analysis of
Moore [3] for the cylindrical-beam FEL in the strong-
pump regime and our analysis for the sheet-beam FEL in
the strong-pump regime {16]. we introduce the nondimen-
sional radial coordinate,

F=r/n (89)
the normalized eigenvalue,
' = 2= ri(v — §) (90)
the mismatch parameter,
p=2-rit (91)

and the coupling parameter,

2 2 k 2
W 5 W 5 w/) wlhy
2 — I 62 —_rb 3/2 1, 1/2"
¢ C v o1 + a;)

(92)

ax =

The governing equation becomes:

(93a)
5055 - [0 - 5]
“8E, =0, |F] > 1. (93b)
The regular solution for |7| < 1 is
8E. = J,_\(xF) (94)
and the bounded solution for |F| = 1 is
SE, = DH\" (¢F) (95)
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where
(96)

The solution (94) and (95) has the same form as in the
strong-pump regime [3]. [ 16]. but the relation between x
and ¢ is different. The original eigenvalue A. has a nega-
tive imaginary part which corresponds to a growing wave
and so does &7, Therefore &, is located in the first quad-
rant of the complex plane and 6F . vanishes at infinity.
The continuity of the fietd and its derivative at 7 = | yields
the dispersion refation:

o)) HY (o)
(97)

C).// |(\)’/;‘ |((,)’ = \/'

which is identical in torm to that derived by Moore |3]
for the interaction in the strong-pump regime.

We tirst ¢xamine the case of strong optical guiding,
when « is large. In that case ¢ is large and the dispersion
relation is approximated as

o, 1(x) = xJ/-1(x) (98)
and therefore
Joi(x) =0 (99)

and

]

(100)

Many of the modes are unstable and have about the same
growth rate, which is the growth rate of the one-dimen-
sional case. The effective filling factor is one.

The opposite case is that of large diffraction, when the
coupling parameter « is small. We treat only the case | =
1. In that case, ¢ is very small and the relation is

a > |,

» o
== 101
Xo o2 ( )

at resonance. Also, x is small and therefore [3], [25]

im (e _ ., 21
2 - M2) TET TG

where yg = 0.577 is the Euler-Mascheroni constant. With
the former relation, we obtain

(102)

i%—%lna+ In (2x) —75=§—$. '(103)
To lowest order:
In(1/a) = 4/x;
and
62 = <3> In <1> (104)
4 o
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In order to find the imaginary part of ¢~, we go to the next
order. Relation (96) becomes:

xi=¢i<1—¢3i>z —‘L‘f. (105)
Equation (103). to first order, is
i§+ln m-lja—)],—z _7":_22_,%,_}" (106)
Therefore,
Imo- = —Im <1§)—4> = :71[01. a << 1. (107)

Using the original variables. we express the growth rate
at the two opposite limits as

|2

( w/:ku') ) ”\l
2y e (1 + dd)

Imk. = — . a>>1 (108)

in the case of strong optical guiding. which is the one-
dimensional limit, and

T W »H wpku'u?r
Imk;=—__r/: 3/ S 1720

e "y Pu(l + )"

a << 1 (109)

in the case of large diffraction. For small « the gain is
increased with the increase of r, when all other parame-
ters are kept fixed. The increase of r, (for constant density
and increased current) increases the filling factor and
therefore also the gain. When o becomes much larger than
one, the filling factor approaches one. Then only the den-
sity matters and not the total current, and the gain is de-
scribed by (108) with no depeadence on the beam radius.
Let us now assume that the total current, defined I =
w,z, v:r,"_.,, is kept constant, and by varying r, we vary the
density. Expressions (108) and (109) now become:

1'*'?qa,

Im#k. = — s a >> |
i 23442 (1 + aﬁ.)l/4
(110)
and
1/2, 2
T w rol' ' “k.a,
Imk. = — — — , << 1.
TET T Beyrraea)” ”
(111)

We see that the dependence of the gain on the radius r,
is not monotonic. If one uses a beam with parameters such
that @« >> 1, and one reduces r,, the gain becomes larger
according to (110), since the density is increased. As in
the one-dimensional case, the gain increases with the in-
crease in density. However, if r, is reduced further and «
becomes smaller than one, the decrease in r, causes a de-
crease in gain according to (111). This is because the de-
crease in the filling factor is more important for o << 1
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than the increase in the density. These two opposing ef-
fects of the reduction in beam dimensions are present for
various regimes of operation of the FEL and in various
geometries. Their relative influences vary, as has been de-
scribed for the strong-pump FEL in a cylindrical geome-
try [3) and in a sheet-beam geometry [16]. For example,
in the strong-pump FEL which employs a cylindrical
beam, the gain, when diffraction is large, is proportional
to (Inr,)'/? and therefore keeps increasing when the beam
radius is reduced. In that case the increase in gain due to
the density increase is more important than the diffraction
loss due to the decrease of the filling factor. A detailed
comparison of the scaling of the gain for the two regimes
of operation and for the two beam geometries, as well as
a discussion on the limited validity of the asymptotic
expressions, are given elsewhere [27].

In this section we examined the influence of the elec-
tron beam radius on the FEL interaction. In the next sec-
tion we will study the effect of the waveguide radius on
the FEL growth rate and wave radial profile.

VI. NuMERrICAL EXAMPLES

In this section we study numerically an FEL which em-
ploys a cylindrical electron beam in a cylindrical wave-
guide. We compare the growth rates and wave radial pro-
files for various waveguide radii. We find the wave growth
rate by solving numerically the dispersion relation (69)
for k.. We find the profile of the wave field by first sub-
stituting the value of k_ into (68) and then substituting the
values obtained for A4,, 43, and A, into (70) and (71).

The FEL interaction within a waveguide is compared
to two other cases: The FEL in the one-dimensional ap-
proximation and the FEL in the absence of a waveguide.
The gain in the one-dimensional FEL is the highest, since
there are no diffraction losses and the filling factor is one.
The gain in the absence of a waveguide is the lowest be-
cause of diffraction losses, even though the wave modi-
fication by the electron beam (optical guiding) reduces
those diffraction losses to some extent (as described in the
previous section). The waveguide increases the filling
factor and therefore also the gain. Reducing the wave-
guide radius is expected to increase the gain to a value
close to the one-dimensional gain. In addition to the gain,
the waveguide also modifies the wave profile. As we dem-
onstrate below, the wave profile varies from the free-space
FEL mode profile (which is composed of several vacuum
waveguide modes) when a waveguide is not present or the
waveguide radius is large, to a vacuum waveguide mode
profile when the waveguide radius is small.

We first describe the gain calculation for the two cases
of the FEL without a waveguide and the one-dimensional
FEL, and the wave profile calculation when there is no
waveguide. For the FEL without a waveguide we could
employ the dispersion relation (97) by taking R to infinity.
We prefer to analyze this case directly. The wave fields,
when there is no waveguide, become:

0E_ =0 (112a)

and
8E, = J,_,(Sr), r
8E, = AH)" (k. r), r
The dispersion relation is, therefore,
STi- (S HY (kury) = ko 2 (ko ry) i (S,
(113)

We find k. by solving (113); we then calculate A4
(=J,_1(Sry)/H" (k. r,)), and using (112) we find the
fields.

We compare our calculated growth rate with the growth
rate of the one-dimensional FEL. In the one-dimensional
case the dispersion relation is

IA

th (112b)
rp. (112(:)

v

SZEwZ—k§—§Q=O. (114)

In the numerical examples the beam radius r,, is 0.2 cm,
the beam energy v is 2.5, and the current density 2
kA /cm?®. The wiggler parameter a,, is 0.42 and the wig-
gler wavenumber ,, is 3.7 cm~'. The azimuthal number
lis 1.

Fig. 2 shows the maximal growth rate and the fre-
quency at the maximal growth rate (the resonant fre-
quency) as a function of the waveguide radius R. For
smaller waveguide radii the resonant frequency is lower.
When R is reduced, k; is increased and the gain is re-
duced [28]. However, the reduction of R increases the
filling factor and as a result the gain is increased. From
Fig. 2 it is clear that the increase in the filling factor dom-
inates. This is true as long as R is not too small, in which
case the gain vanishes. The two Doppler-upshifted and
-downshifted resonant frequencies are approximately:

TR PNT I Y
@2 (1 — o2/ R o c '

(115)

When R is small enough (and &, is large enough) the term
in the square brackets becomes negative and the FEL in-
teraction disappears. This is reflected in the abrupt fall of
the growth rate for R < 0.275 cm. The maximal growth
rate of the one-dimensional FEL (A4 in Fig. 2) is 0.204
cm ™', and the frequency at which that growth rate is max-
imal (B in Fig. 2) is w/c = 30.8 cm™'. The wavenumber
k. corresponding to a maximal growth rate when a wave-
guide is not present is 29.085 — i0.0485 cm ™' (the growth
rate is denoted in Fig. 2 as C), and the frequency at which
the growth rate is maximal is w/c = 29.9 cm™' (D in
Fig. 2).

Figs. 3-10 illustrate the somewhat competing effects of
the waveguide and FEL interaction on the profiles of the
wave-field components \/5(5E+ [, V2|8E_|, | 6E.|, and
| 6B.|. First, Figs. 3 and 4 show these wave components
of the vacuum waveguide modes TE,, and TM,,. Next,
Fig. 5 shows the free-space FEL mode for the case in
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Fig. 2. The maximal growth rate (—/mk.) and frequency (w/c) at which
the growth rate is maximal as a function of the waveguide radius R. Also
denoted are Imk. and « /¢ for the maximal growth rate for the one-di-
mensional FEL (A and B) and for an FEL without a waveguide (C and
D). The parameters are: a, = 0.42, k., = 3.7 ecm 'Ly = 2.5, and
current density = 2 kA /em”. The azimuthal wavenumber / is 1. The
beam radius is r, = 0.2 cm.

|3E;|
0.25

0] 005 Q.10 0.15 0.20

r{cm)

030

Fig. 3. The absolute values of the wave components v2|5E, |. V2|3E |,
|6E.|. and | 8B.]| of the vacuum TE,, mode. The parameters arc: w/¢
=230cm ',and R = 0.3 cm.

Fig. 4. The absolute values of the wave components v2|5E, |, V2|5E . |.
|8E_|, and | 6B.| of the vacuum TM,, mode. The parameters are: w /¢
=23.0cm ' andR = 0.3 cm.

which no waveguide is present. The mode shown is the
most unstable FEL mode, for the frequency and growth
rate given in Fig. 2 (D and C). By comparing the profiles
in Figs. 3 and 4 versus those in Fig. 5, we observe the
differences between the vacuum waveguide modes and the
free-space FEL mode. The vacuum waveguide modes are
either TE or TM modes and the component §E_ is not
zero. The components |8E. | and | 6B, | of the FEL mode
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Fig. 5. The absolute values of the wave components of the frec-space FEL
modc. No waveguide is present. The paramcters are the sume as those
of Fig. 2. Also: k. = 29.085 — i0.0485cm ' and w/c =299 cm .
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Fig. 6. The absolute values of the wave components of the FEL mode for
R = 0.3 cmi. The other parameters are as in Fig. 2. Also: k. = 22.2 —
i0.146 cm ', and w/¢ = 23.0cm .
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Fig. 7. The absolute values of the wave components of the FEL mode for
R = 0.5 cm. The other parameters are as in Fig. 2. Also: k. = 28.08 —

i0.112cm ' and w/¢ = 283 cm .
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Fig. 8. The absolute values of the longitudinal components | £ .| and | 88. |
of the FEL mode of Fig. 7.

are, in contrast, equal. The FEL mode is neither a TE nor
TM mode, but rather is of a mixed type. Also, the left-
hand polarized wave 6 E_ of the FEL mode is zero.
When an FEL operates within a waveguide the wave
profile is different from both the vacuum waveguide modes
(Figs. 3 and 4) and the free-space FEL mode (Fig. 5).
When the waveguide radius is small, the FEL mode re-
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Fig. 9. The absolute values of the wave components of the FEL mode for
R = 0.9 cm. The other parameters are as in Fig. 2. Also: k. = 29.99 —
i0.0749 cm '.and w/c =29.9cm .
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Fig. 10. The absolute values of the longitudinal components of the FEL
mode of Fig. 9.

sembles a vacuum waveguide mode. Fig. 6 shows the
most unstable FEL mode for R = 0.3 cm. Its profile is
very similar to the vacuum TE,, mode. The component
6E. is almost zero, while 6B. is similar to §B. of the vac-
uum TE,, mode. When R is 0.5 cm, the wave profiles
have some similarity to the free-space FEL mode as well.
The left-hand polarized wave §E_ is smaller and 8E. is
finite (Fig. 7). The longitudinal components |6B.| and
|8E, | for R = 0.5 cm are shown also in Fig. 8. When the
waveguide radius is even larger (R = 0.9 cm), the wave
profile is modified considerably by the FEL interaction
(Fig. 9). It strongly resembles the free-space FEL mode.
The component §E _ is very small. The longitudinal com-
ponents |8E.| and | 6B, | are nearly identical (Fig. 10), as
in the free-space FEL mode (Fig. 5), and their magni-
tudes are different only near the waveguide wall.

The reason for the above influence of the waveguide
radius on the FEL mode is the following: When R is small
the difference between the values of k, for neighboring
vacuum waveguide modes is relatively large. The change
in k, due to the FEL interaction is smaller than that dif-
ference and therefore the FEL modes are only slightly
modified from the vacuum waveguide modes. On the other
hand, when R is large that difference becomes small, and
the FEL mode is described as a coupling of several vac-
uum waveguide modes. The FEL mode is then signifi-
cantly different from each individual vacuum-waveguide
mode. The FEL experiments at Columbia University in-
cluded both experiments with an FEL mode very similar
to a vacuum waveguide mode {29] (R was 0.32 cm) and
experiments where the FEL mode was significantly dif-
ferent from any particular vacuum waveguide mode [23]
(R was 0.9 cm). The beam and wiggler parameters of our

numerical examples are similar to those in the Columbia
experiments, although a,. in our example is 0.42, while
at the Columbia FEL it was smaller, about 0.3.

The wave profile modification, and thus its greater con-
finement to the electron beam volume, results in a higher
gain due to the enhanced effective filling factor. On the
other hand, the FEL interaction affects the purity of the
vacuum waveguide modes. These two effects are clearly
demonstrated in this paper. The present formalism can,
therefore, be used to calculate the expected gain, wave
profile, and mode structure in the linear regime in plan-
ning FEL experiments.

ACKNOWLEDGMENT

The author benefited from useful discussions with A.
Bhattacharjee, T. C. Marshall, E. Jerby, A. Gover, and
J. S. Wurtele.

REFERENCES

[1] T. C. Marshall, Free Electron Lasers.
and references therein.

12] E. T. Scharlemann, A. M. Sessler, and J. S§. Wurtele. **Optical guid-
ing in a free-electron laser,”” Phvs. Rev. Lett., vol. 54, pp. 1925-
1928, 1985.

{3] G. T. Moore. **The high-gain regime of the free-electron laser,"" Nucl.
Instrum. Methods, vol. A239, pp. 19-28, 1985,

[4] P. Luchini and S. Solimeno, **Optica! guiding in an FEL."" Nucl.
Instrum. Methods, vol. A250, pp. 413-417, 1985.

|5] M. Xieand D. A. G. Deacon. "Theoretical study of FEL active guid-
ing in the small signal regime.”” Nucl. Instrum. Methods, vol. A250,
pp. 426-431. 1985.

16] K. J. Kim, **Three-dimensional analysis of coherent amplification and
self-amplified spontaneous emission in tree-electron lasers.’” Phys.
Rev. Leti., vol. 57, pp. 1871-1874. 1986.

[7] P. Sprangle. A. Ting, and C. M. Tang. ‘'Radiation focusing and
guiding with application to the free electron laser,”” Phys. Rev. Lett.,
vol. 59, pp. 202-205, 1987.

[8] S. Krinsky and L. H. Hu. "*Output power in guided modes for am-
plified spontaneous emission in a single-pass free-electron laser,””
Phys. Rev.. vol. A35. pp. 3406-3423, 1987.

[9] B. Hafizi. P. Sprangle. and A. Ting, **Optical gain. phase shift, and
profile in free-electron lasers,”” Phyvs. Rev.. vol. A36. pp. 1739-1746,
1987.

[10] A. Fruchtman, **A thick beam free-electron laser."* Phvs. Fluids, vol.
30, pp. 2496-2503. 1987.

[11] S. Y. Cai, A. Bhattacharjee, and T. C. Marshall. **Optical guiding
in a Raman free electron laser.”” IEEE J. Quantum Electron.. vol.
QE-23, pp. 1651-1656, 1987.

[12] E. Jerby and A. Gover, " A linear three-dimensional model for free-
electron laser amplifiers,”" Nucl. Instrum. Methods. vol. A272, pp.
380-385, 1988.

[13] H. P. Freund. H. Bluem, and C. L. Chang, **Three-dimensional sim-
ulation of free electron lasers with planar wigglers,”” Nucl. Instrum.
Methods, vol. A272, pp. 556-563. 1988.

[14] M. Xie, D. A. G. Deacon. and J. M. J. Madey, '*The guided mode
expansion in tree electron lasers.”” Nucl. Instrum. Methods, vol.
A272. pp. 528-531. 1988.

[15] L.-H. Yu and S. Krinsky. "*Gain reduction due to betatron oscilla-
tions in a free electron laser.”” Phys. Lett., vol. A129, pp. 463-469,
1988.

[16] A. Fruchtman, '*Optical guiding in a sheet-beam free-electron laser,””
Phys. Rev., vol. A37, pp. 2989-2999, 1988.

[17] A. Fruchtman, ‘*High density thick-beam frec-electron laser,* Phys.
Rev., vol. A37, pp. 4259-4264, 1988.

[18] A. Fruchtman and H. Weitzner, **Raman free-electron laser with
transvers density gradients,”” Phvs. Rev., vol, A39, pp. 658-667,
1989.

[19] T. M. Antonsen, Jr., and P. E. Latham, "'Linear theory of a sheet
beam free electron laser,” Phvs. Fluids, vol. 31, pp. 3379-3386,
1988.

New York: Macmillan, 1985,



436

[20] E. Jerby and A. Gover, ‘*Wave profile modification in free-electron
lasers: Space-charge transverse fields and optical guiding,’” Phys. Rev.
Lett., vol. 63, pp. 864-867, 1989.

[21] R. W. Warren and B. D. McVey, ‘‘Bending and focusing effects in
an FEL oscillator I: Simple models,”” Nucl. Instrum. Methods, vol.
A259, pp. 154-157. 1987.

[22] F. Hartemann, K. Xu, G. Bekefi, J. S. Wurtele, and J. Fajans,
‘“Wave-profile modification (optical guiding) induced by the free-
electron laser interaction,’” Phys. Rev. Lett., vol. 59, pp. 1177-1180,
1987.

[23] A. Bhattacharjee, S. Y. Cai, S. P. Chang, J. W. Dodd, and T. C.
Marshall, ‘‘Observations of optical guiding in a Raman free-electron
laser,”’ Phys. Rev. Leut., vol. 60, pp. 1254-1257, 1988.

[24] H. P. Freund and A. K. Ganguly, ‘‘Nonlinear analysis of efficiency
enhancement in free-electron-laser amplifiers,’” Phys. Rev., vol. A33,
pp. 1060-1072, 1986.

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions. New York: Dover, 1965, p. 360.

[26) A. Bhattacharjee et al., *“Theory and observation of optical guiding
in a free electron laser,’’ Phys. Rev., vol. A40, pp. 5081-5091, 1989.

[27] A. Fruchtman, ‘‘Gain reduction in FELs due to diffraction losses’’
Nucl. Instrum. Methods, vol. A285, pp. 122-127, 1989.

{28] A. Friedman, A. Gover, G. Kurizki, S. Ruschin, and A. Yariv,
‘‘Spontaneous and stimulated emission from quasi-free electrons,’’
Rev. Mod. Phys., vol. 60, pp. 471-535, 1988.

[29) J. Masud, T. C. Marshall, S. P. Schlesinger, and F. G. Yee, “‘Re-
generative gain in a Raman free-electron laser oscillator,”” {EEE J.
Quantum Electron., vol. 23, pp. 1594-1604, 1987.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 18, NO. 3, JUNE 1990

[30] F. Hartemann, G. Mourier, and R. C. Davidson, ‘‘Anomalous (stim-
ulated) refraction induced by the free-electron laser interaction,”’
Plasma Fusion Ctr., MIT, Cambridge, MA, PFC Rep. No. PFC/JA-
89-51.

Amnon Fruchtman was born in Rehovot, Israel,
on August 21, 1952. He received the B.Sc. (phys-
ics) degree in 1973 from Tel Aviv University, the
M.Sc. degree in 1978, and the Ph.D. degree in
plasma physics, from the Hebrew University of
Jerusalem in 1983, for suggesting and analyzing
the wiggler-free free electron laser.

As a Chaim Weizmann Postdoctoral Fellow in
1983-1985 and as a Research Scientist in 1985-
1986, he worked at the Courant Institute, New
York University, on wave propagation and the RF
heating in plasmas. In October 1986 he joined the Weizmann Institute of
Science, Rehovot, Israel, where he is now a Senior Scientist. His research
topics include various aspects of plasma physics, such as magnetic field-
plasma interactions, plasma waves and instabilities, ion diodes, plasma
switches and pinches, and free electron lasers.

Dr. Fruchtman is a member of the American Physical Society.




